
King of the Hill: A Novel Cybersecurity Competition for Teaching
Penetration Testing

Kevin Bock George Hughey Dave Levin
University of Maryland

Abstract
Cybersecurity competitions are an effective and en-

gaging way to provide students with hands-on experi-
ence with real-world security practices. Unfortunately,
existing competitions are ill-suited in giving students
experience in penetration testing, because they tend to
lack three key aspects: (1) pivoting across multiple ma-
chines, (2) developing or implanting custom software,
and (3) giving students enough time to prepare for a
lively in-class competition. In this paper, we present
the design, implementation, and an initial run of King
of the Hill (KotH), an active learning cybersecurity com-
petition designed to give students experience performing
and defending against penetration testing. KotH com-
petitions involve a sophisticated network topology that
students must pivot through in order to reach high-value
targets. When teams take control of a machine, they also
take on the responsibility of running its critical services
and defending it against other teams. Our preliminary
results indicate that KotH gives students valuable and
effective first-hand experience with problems that pro-
fessional penetration testers and network administrators
face in real environments.

1 Introduction

Performing and defending against penetration testing
(pentesting) are important and exciting topics for stu-
dents to learn. Through teaching these concepts, we find
that students learn fundamental aspects of security, such
as maintaining critical services, identifying weak links
in a network, and composing multiple, smaller attacks to
achieve a larger, more difficult goal.

Cybersecurity competitions—such as Capture-the-
Flag (CTF) [1, 2, 7, 6] and Build-it/Break-it/Fix-it [18,
19]—have been demonstrated to have positive impact on
cybersecurity education [4, 8, 12]. However, we have
found prior designs to be a poor fit for pentesting. In

particular, we identify three key aspects to pentesting
that, to our knowledge, have not been widely reflected
in prior cybersecurity competitions (we describe related
work more fully in Section 2):

• Pivoting: In real-world networks, rarely are all ma-
chines (and all vulnerabilities) directly accessible
from all other machines. Real pentesters must pivot
from one compromised machine to another in order
to gain access to more machines.

• Implants: After gaining access to a machine, pen-
testers often have the opportunity to leave behind
implants: their own software that, for instance,
opens a backdoor, closes vulnerabilities from other
attackers, and so on.

• Preparation: Professional pentesters often have
time to prepare by performing reconnaissance,
scanning a network, and writing their implant code.

We introduce King of the Hill (KotH), an in-class cy-
bersecurity competition designed to give students hands-
on experience performing—and defending against—
penetration testing. KotH is distinguished from prior
competitions in that it supports the aspects we believe
to be key to teaching pentesting. Pivot: Whereas most
competitions like Attack-Defense CTFs tend to use a
fully connected mesh network, KotH competitions in-
volve a more sophisticated network topology. Students
must therefore employ a strategy of what sequence of
machines to compromise and defend. Implant: Once one
team takes over a machine, another team of students may
subsequently take it over. Students therefore have incen-
tive to leave implants that patch running services and that
introduce their own backdoors. Prepare: KotH compe-
titions are held during class; in order to prepare their
strategies and implants, we give students copies of the
network ahead of time.

1



As with all offensive competitions, care must be taken
to ensure this offensive exercise does not end up teach-
ing students the “wrong” behavior. To this end, KotH
is both offensive and defensive: when a team takes over
a machine, they do not simply collect a flag, but rather
they take over the responsibility of that machine. In par-
ticular, every machine in a KotH network runs one or
more critical services; when a team has control over a
machine, the team gains points for as long as the crit-
ical service remains running. Students therefore gain
experience having to decide between turning off a ser-
vice that is known to be vulnerable (and thus not gain as
many points), running the vulnerable service (and thus
risk losing control of the machine altogether), or patch-
ing the vulnerability (and spending valuable time in the
process). In this way, we believe KotH exposes students
to many of the trade-offs inherent in network adminis-
tration, and teams are rewarded if they can defend a ma-
chine successfully. Furthermore, exploiting these vul-
nerabilities actually gives students more experience and
a deeper knowledge of how the vulnerabilities occurred,
so that they can protect themselves in the future. We aim
to define a game that reinforces best practices in security,
and punishes objectively incorrect behavior (destroying
computers, etc.).

This paper makes the following contributions:

• We present the design and implementation of KotH,
a security competition for teaching students how to
launch and defend against penetration testing.

• We present preliminary results from an in-class run
of KotH, showing that KotH is an effective way to
teach students penetration testing skills.

• Our run of KotH’s network layout and scorebot
source code are publicly available at:

https://koth.cs.umd.edu

The rest of this paper is organized as follows. In Sec-
tion 2, we review related work in the areas of cyberse-
curity competitions. We describe KotH’s design goals in
Section 3, its design in Section 4, and our implementa-
tion in Section 5. In Section 6, we present the results
from a sample run of KotH. We discuss potential varia-
tions of KotH in Section 7, and conclude in Section 8.

2 Related Work

As cybersecurity competitions have become remarkably
popular in recent years, a wide range of variants have
been introduced. In Capture the Flag (CTF) compe-
titions, participants act as attackers in various chal-
lenges, including web exploits, cryptography, and re-
verse engineering—these give students experience with

launching attacks. In Attack/Defense CTFs, partici-
pants are provided a network they must solely attack or
defend [14, 20]—these were designed to give students
experience with both offensive- and defensive-related
skills. Build-it/Break-it/Fix-it competitions ask build-it
teams to write software, which is subsequently attacked
by break-it teams [18, 19]—these competitions give stu-
dents experience with writing and attacking secure soft-
ware. Throughout various competitions such as these,
teams tend to take a purely offensive or purely defen-
sive stance. In contrast, KotH teams must simultaneously
exploit a wide range of vulnerabilities while defending
against other attackers seeking to take over their com-
promised machines. This “tug-of-war” over individual
machines leads students to consider trade-offs between
both offensive and defensive stances.

Conklin described a cybersecurity curriculum involv-
ing penetration testing [3], but chose not to incorporate
offensive games into his capstone competition. There is
empirical evidence for a shortage of competitions suited
to teach penetration testing. Woszczynski and Green [21]
surveyed educators, employers, and judges from cyber
defense competitions (CDCs) to evaluate the extent to
which different competitions prepared students for vari-
ous skills, including penetration testing, use of Linux, in-
formation assurance, and so on. They found that, while
universities and employers placed high importance on
penetration testing (2.88 and 3.14 on a 4-point scale re-
spectively), existing CDCs and CTFs did a poor job at
preparing students for them (1.88 on a 4-point scale). We
seek to fill this gap with a competition centered on pene-
tration testing.

3 Goals

In order to teach penetration testing, we wanted an ex-
ercise that was engaging and allowed students to prac-
tice and apply skills specific to penetration testing. At-
tack/Defense CTFs lend themselves closely to the offen-
sive nature of such an exercise, and have been used for
students to practice both offensive and defensive skills
alike. However, there are a number of critical aspects of
penetration testing specifically that students do not get to
practice in most Attack/Defense CTFs:

Goal #1: Pivoting The first of these is the concept
of pivoting. For professional penetration testers, pivot-
ing (sometimes also known as lateral movement) is the
process of using a compromised machine to further ac-
cess and launch attacks deeper into otherwise inaccessi-
ble networks or machines. For example, if an attacker
has a foothold in a machine in subnet A and can compro-
mise a machine connected to both subnet A and subnet

2



B, the attacker could use the second machine to pivot
and extend their reach into subnet B. Pivoting is a criti-
cal skill for professional hackers and penetration testers
to master, but most Attack-Defense CTFs generally con-
nect all teams to a small set of computers on one fully
interconnected or mesh network. In these network con-
figurations, no pivoting is required to attack other com-
puters. Therefore, the first goal in the design of our com-
petition was to require students to pivot, so as to more
closely mimic real penetration testing engagements.

Goal #2: Implants Another important aspect to pene-
tration testing engagements is the development of custom
scripts, tools, and implants. For professional hackers and
penetration testers, an implant is a binary that is deployed
on a target network to accomplish some task or offer a
persistence mechanism to the attacker. The development
of custom implants or tools has become increasingly crit-
ical for successful penetration testing engagements. Un-
fortunately, some competitions directly prohibit the de-
velopment or inclusion of custom tools or scripts [20].
Therefore, the second goal of our competition was to en-
courage custom implant development.

Goal #3: Reconnaissance In most CTFs, the competi-
tors are not given access to or even detailed information
about the target environment in advance of the competi-
tion. Therefore, students are limited to the competition
timeframe to discover vulnerabilities, develop and test
exploits, write any required tooling or implants, and plan
a strategy for usage. This tight timeline often forces stu-
dents to sacrifice deeper analyses of targets or the devel-
opment of scripts, tools, or other implants that could be
useful during the competition. Therefore, the third goal
of our competition was to design the exercise timetable
in such a way that permits deeper vulnerability analysis,
while still maintaining the excitement and engagement
of a live exercise.

Goal #4: Defensive trade-offs By its nature, an ex-
ercise to teach penetration testing must be offensive, but
we want students to learn critical defensive skills as well.
Many decisions faced daily by Network Security Oper-
ation Centers daily are important for students to learn,
such as weighing the security risk of assets, monitoring
the security of a network, and most importantly, being
able to defend against the penetration testing techniques
they are learning. Therefore, our fourth goal was to en-
courage defensive operations and force students to make
defensive trade-offs: weighing the relative risk of keep-
ing an important (but potentially vulnerable) asset on
a network, watching their network for potential insider
threats, and more.

Goal #5: Encourage Good Habits Lastly, it is impor-
tant to ensure that students do not take away the “wrong”
lessons from this exercise. Although the competition is
offensive in nature, a critical goal was that students take
away best practices for both offense and defense, and
keep ethics in mind.

4 Design

To fulfill these goals, we introduce King of the Hill
(KotH). KotH is a novel active learning cybersecurity
competition designed to let students practice skills spe-
cific to penetration testing in a safe, isolated environ-
ment. KotH requires students to pivot extensively, de-
velop custom implants, perform advanced reconnais-
sance before the competition, make live defensive trade-
offs, and addresses other shortcomings. We begin by de-
scribing the high-level gameplay.

4.1 Gameplay

Students are divided into teams, and each team must
work together to attack, control, and defend as many
computers on a target network as they can.

Gameplay occurs over a large, complex, isolated vir-
tual environment, comprised of vulnerable Linux and
Windows virtual machines of various builds that are
spread across multiple partially interconnected subnet-
works. Each team has an entry point into the network
at points distant to one another: an offensive Kali im-
age preloaded with many offensive tools that students
SSH into to access the competition environment. By de-
sign, no other team can access a teams entry machine
to ensure that every team can always access the compe-
tition environment, and Kali machines are out of scope
for the duration of the competition. We also introduce
a network-wide scorebot which tracks scores through-
out the competition. Each machine (other than the entry
points and the scorebot) has a number of critical services
that must be maintained and protected, and has a num-
ber of pre-seeded vulnerabilities. At the beginning of the
competition, every vulnerable machine in the network is
considered unclaimed.

Each team’s goal is to exploit as many vulnerable ma-
chines on the network as they can, claim them by calling
out to the global scorebot, defend them from other teams,
and protect their critical services. We will refer to the
collection of machines that have already been claimed
by a team as that team’s territory. Teams are awarded
points for each machine they control and, if critical ser-
vices are functioning on each machine, for each scoring
interval throughout the competition. The winner is the
team with the most points at the end of the competition.

3



4.2 Non-trivial network topologies

To achieve our first goal of encouraging and requiring
pivoting, in King of the Hill, we design a non-trivial net-
work topology with multiple distinct local area networks,
requiring students to pivot repeatedly in order to reach
many of the machines in the virtual environment. As in
real networks, controlling machines attached to multiple
networks is inherently more valuable, as they can be used
as a pivot to breach other teams’ territories. Students
therefore have incentive to control and defend machines
attached to multiple networks these machines. KotH’s
heavy encouragement of pivoting is a significant differ-
ence from previous competitions, in which all teams can
directly attack all others at any time. Conversely, based
on a sample run of KotH (Section 6), we observe that
the competing incentives to control well-connected ma-
chines lead to interesting and dynamic battlegrounds.

King of the Hill also opens up a number of new teach-
ing opportunities for educators. Instructors can design
the environment in order to encourage certain behavior
or force students to use specific knowledge, or tailor the
environment to their students skillsets and levels. We dis-
cuss this in greater depth in Section 7.

4.3 Defense

When gameplay begins, teams initiate offensive opera-
tions on the machines in the subnet they can access, and
attempt to expand their territory of control. As students
break into and claim these machines, they inherit the re-
sponsibility for running the computer, and must ensure
that the critical services on the machines stay running
and secure from other teams. Students must therefore
protect both their services and their access to the ma-
chines. Competitors are incentivized to patch the vulner-
ability they used to gain access and any other vulnerabil-
ities they may be aware of to prevent other teams from
taking the machine from them. This gives students valu-
able defensive practice, as they must be able to both ex-
ploit a vulnerability and defend against it to succeed.

Through this process of exploitation, patching, and re-
exploitation, we expect the machines in the network to
get increasingly secure as the competition goes on. Many
machines therefore are likely to change hands between
teams a number of times until finally they become too
secure to be taken over again.

Importantly, many of the services for each computer
may contain vulnerabilities. This forces students to make
difficult decisions about which services are worth keep-
ing alive—each additional service is worth many points,
but could potentially be an avenue for other teams to
compromise their machine. Such cost-benefit analyses
are common in the real world.

4.4 Student preparation

Introducing a larger, more complicated, diverse network
topology, however, exacerbates the issue of limited com-
petition time to fully investigate and explore the environ-
ment. Therefore, to our third goal, each KotH team is
given a full clone of the environment two weeks in ad-
vance of the live competition to allow them to penetra-
tion test the network. Every teams copy of the network
was completely isolated from the other clones, allowing
each team to find vulnerabilities and test exploits without
risking other teams discovering what they found.

We encouraged all teams to find multiple vulnerabili-
ties before the start of the competition. In so doing, each
team could enter the competition with multiple ways to
access (and sometimes escalate privileges on) and defend
multiple target machines. Note that teams can find over-
lapping but different sets of vulnerabilities about a target
system, making for an interesting and exciting dynamic
during the live exercise as teams can have different meth-
ods of access to the same valuable machines.

4.5 Implants

Towards our goal of implant development, using the en-
vironment clone teams were given in advance, we require
each team member to develop an implant to be deployed
on a machine of their choice in the competition environ-
ment. Each team member develops a backdoor or im-
plant, and we deploy them on a specific target machine
of their choice before the competition begins. There-
fore, no team knows what implants were developed by
other teams, or on which machines they were deployed.
These implants are designed to seed access to specific
machines and offer a persistence mechanism for teams.
In this manner, at the start of the competition, each team
has multiple additional means of access or persistence to
specific machines on the network that no other team is
initially aware of. Teams are offered bonus points dur-
ing the live competition for finding other teams implants,
giving teams incentive to hunt and root out other teams’
implants or backdoors.

4.6 Continual scanning

During the competition, a few additional, highly vulnera-
ble, unscored, hidden machines are secretly added to the
network that do not appear in the teams initial network
copies or the scorebots top-down map of the network.
These machines are easy to breach compared to the rest
of the network, and can pose a threat to teams if other
teams can attack them through previously unseen vec-
tors. It is important for students to frequently scan their
networks and territory to avoid a surprise attack from a

4



previously-unknown pivot, or to take advantage of an un-
known pivot to launch attacks at other machines. This is
done to mimic the threat faced often by real Network Op-
eration Centers of new vulnerable or compromised ma-
chines being connected to networks by unknowing em-
ployees, insider threats, or malicious actors.

4.7 Scoring

Scorebot We run a global scorebot central to the net-
work, reachable from all other machines. Students can
trigger a “phone-home” at the scorebot to claim a ma-
chine. Students prove access to the scorebot by issuing a
crafted GET request from the claimed machine. Students
cannot spoof the scorebot from other IP addresses.

The scorebot has a web interface accessible to all
teams with a top-down, live graphical map of the net-
work, so students can immediately see which teams
have claimed which machines and when machines are
claimed. The scorebot displays a graph of the score for
all the teams, so students can watch the overall progres-
sion of the game. The overall accessibility of each ser-
vice is also displayed in the scorebots web interface, so
students are given near immediate feedback of the in-
tegrity of the services they are defending. This dashboard
helps create a more lively battleground, as it allows teams
to stay abreast of where in the network the attacks are
taking place, and where to target.

The scorebot is considered out of scope for the offen-
sive actions for the students on the network.

The scorebot also periodically checks which services
are up, and uses this information in its scoring. Every
two minutes, the scorebot checks the integrity of the crit-
ical services on each machine, and teams are awarded
points for each machine they control and all of the func-
tioning services they have kept alive on that machine.

Points Points were automatically awarded by the
scorebot as follows:

• 1 point if the machine is up/responding to pings

• 1 point for each critical service required by the ma-
chine (often HTTP, SSH, FTP, etc, which are usu-
ally also vulnerable, therefore requiring teams to
keep these services up rather than just firewalling
everything off)

• The total points for each round is multiplied with
a (slowly) exponentially growing multiplier so that
later rounds are worth more than earlier rounds, as
machines are more secure by the end of the compe-
tition

5 Implementation

The competition backend was designed and run in
Cypherpath, a virtual Software Defined Infrastructure
(SDI) management program [5], allowing us to virtual-
ize the entire network and all machines on it. The score-
bot was deployed on an out-of-scope machine central to
the network, and was written in Node JS. The network
layout, machine information, vulnerabilities we seeded,
and scorebot implementation are publicly available at
https://koth.cs.umd.edu.

6 Sample Run

We deployed a King of the Hill exercise for our course
on Introduction to Penetration Testing, and ran the live
exercise for 3 hours. The class was split into 4 teams of
4–5 people, each labeled by color (Blue, Green, Orange,
and Red). We designed a large vulnerable network, de-
picted in Figure 1. Each team was given an entry Kali
machine connected to a different network, and no team at
the onset of the competition could reach any other teams
Kali machine directly. Each network included a set of
machines that were connected either only to their net-
work, or to other networks as well (pivots). Machines
that do not act as pivots were worth more points, as they
are harder for teams to reach initially (as you must pivot
through another machine to reach them). One pivot ex-
ists between every pair of teams; these are depicted as
the two-colored machines in Figure 1. A fifth central
network was introduced, so that all pivot machines can
communicate directly with all other pivots. We created
six unique vulnerable images (4 Linux, 2 Windows ma-
chines), and duplicated them across the networks so that,
from each teams perspective, the network was symmetric
and no two duplicate images were connected to any one
team’s network.

Consider the network diagram in Figure 1. All ma-
chines that share the same image name are the same base
image. The set of machines that each team can reach
through one hop from their Kali machine is unique, and
it is apparent that the network is symmetrical from each
team’s perspective. If teams develop an exploit for one of
the pivots, they can use that pivot to launch that attack at
its clone and increase their network control. The network
diagram also shows which machines are inherently more
valuable as pivots. From red’s Kali machine, if the red
team compromises the Linux FTP machine, the red team
will be able to pivot through this machine to launch at-
tacks at the machines that are connected only to the green
teams initial network (Asset 1 and Asset 2).

Each Kali machine and one Windows machine were
also given access to a second network switch that pro-
vided Internet access. In this manner, teams could down-

5



Figure 1: Network topology of our run of KotH. Four
teams (Blue, Green, Orange, and Red) compete across
this non-trivial network topology (mixed colors denote a
pivot between those teams) a pivot between those teams).
A central scorebot verifies that all critical services are
running.

load patches, tools, or other software during the compe-
tition and move it around the network from these ma-
chines. Note that the rest of the machines in the network
were isolated from the Internet.

Table 1 describes the critical services present on each
of the six images, and their relative difficulty to compro-
mise.

6.1 Results
For our course, students were given access to an isolated
copy of the full competition environment two weeks in
advance of the live competition, and were given an as-
signment to find two vulnerabilities on a machine on the
target network. Every student completed the assignment,
and many went well above and beyond—over half the
class spent extra time to find at least four vulnerabilities,
and some students penetration tested almost every im-
age on the network. Note that we can only know that a
team discovered a vulnerability if they submitted a report
about it or exploited it during the live competition—we
cannot measure if a student stumbled across a vulnera-
bility but did not submit or use it.

Vulnerabilities Every vulnerability we seeded was
discovered by at least one team, but no one team found
every vulnerability in the environment. The set of vul-
nerabilities discovered by each team overlapped, and was
unique between all four teams. We divide the vulnerabil-
ities into two classes: access and local privilege escala-
tion (LPE). Across all teams, students discovered every
access vulnerability and most LPE vulnerabilities.

Prior to the competition, students attempted a wide
range of attacks against the machines on the network.
Teams performed MITM attacks between machines to
capture network credential exchanges, and every team
cracked many local password hashes for the local ac-
counts to have more credentials for use during the live
competition.

Students were quick to patch vulnerable services dur-
ing the competition after gaining access. Competitors
worked to enable and configure strong firewall policies to
block traffic on unwanted ports, and then combed care-
fully through running services and processes to find mali-
cious or vulnerable code. By the end of the competition,
most computers were significantly more secure than at
the beginning. For some vulnerabilities that were more
time-consuming to patch (or would require a computer
reboot, such as EternalBlue [9, 10, 17], students weighed
the cost of lost points during patching against the risk
of another team exploiting them—they usually chose to
leave them unpatched (multiple teams specifically re-
ported this for EternalBlue). Unsurprisingly, although
students worked hard to patch the computers, some were
hesitant about installing AntiVirus on the computers they
had taken over for fear of losing their own access meth-
ods. Most students trusted their implants as a backdoor
over the access methods they knew other teams could
be aware of, and students usually accessed machines
through their implants over other access vulnerabilities,
if given the choice between them. Implants will be dis-
cussed in greater depth below.

Although students identified most access vulnerabili-
ties, LPE vulnerabilities were most often missed by stu-
dents during their initial penetration test. Only unprivi-
leged access is required to trigger a phone-home to the
scorebot from a given machine to claim a machine, so
privileged access is primarily useful for bolstering access
and acting defensively. Before the competition, students
seemed to value unprivileged access to machines more
highly than a full-chain of exploits (access + LPE) to gain
fully privileged access, but this dynamic changed during
the competition. Many machines had multiple teams si-
multaneously accessing them with unprivileged access,
and it became a “race to root” of which team could es-
calate their privileges to kick out the other teams first
and defend the machine. Students who did not find suf-
ficient LPEs beforehand spent time identifying and enu-
merating new ones during the competition to protect their
assets and prevent another team from taking down their
services, and most were successful in identifying LPEs
their team had not previously discovered. Through this
process, students learned how to identify vulnerabilities
and how they could be leveraged by an attacker.

6



Image Name OS Critical Services Difficulty Pivot?
Linux FTP Linux FTP, SSH, HTTP Easy 3
Windows FTP Windows FTP, IIS, RDP Difficult X
Workstation Windows RDP, SMB, Medium X

Msft. Net Discovery
Compiler Linux SSH, Apache, Easy X

Compiler
Asset 1 Linux FTP, SSH, HTTP Medium 7
Asset 2 Linux SSH, HTTP, HTTP-ALT Medium 7

Table 1: Critical services across the images in our de-
ployed competition. “Difficulty” refers to the difficulty
to initially infect the critical service(s) or machine. Our
“Compiler” application takes an input program and runs
gcc on it.

Implants Students put a great deal of effort in develop-
ing their implants, and the quality of submitted implants
was high. Although there were some simpler implants,
such as custom written unauthenticated bind shells, some
implants were significantly more complex. Multiple stu-
dents developed various userland rootkits for Linux us-
ing LD PRELOAD, and some were fully self-protecting
or self-hiding. Even multiple students with root access to
the machine could not delete one rootkit, as it had hooked
functions used by rm, ls, and many more binaries. Multi-
ple students built off open source rootkit projects, such
as the Jynx Kit, to protect their implants [13]. One
student, aware that other teams were working on user-
land LD PRELOAD solutions, developed a small ker-
nel module. Two students developed rootkits that in-
fected the Linux PAM (Pluggable Authentication Mod-
ule) to always allow their team’s password to access
the machine. Two students independently recompiled
Bash from source to introduce hidden backdoors or en-
able restricted shells for users without their teams’ pass-
words. One student recompiled a modified SSH from
source so that it logged all password attempts in plain-
text to a hidden file. Multiple students deployed custom
encoded Metasploit backdoors for both Linux and Win-
dows. Most teams trusted that their implants were secure
from other teams, and multiple teams manually installed
their implants on additional machines during the compe-
tition to bolster their access to machines.

Most teams were able to find and remove at least one
implant from another team, but some implants were very
well self-protected, and could not be removed. Some
students noticed different behavior on certain machines
caused by implants, and applied forensics to identify
what type of implant was running and how it could be
safely removed. Interestingly, as teams began increas-
ingly relying on their implants, students began changing
tactics to attack other teams’ implants. One team began
fuzzing a team’s custom shell mid-competition, and suc-
ceeded in finding edge cases that caused unexpected be-

havior (although they did not have time to develop this
into a functioning exploit). One team successfully found
a hard-coded key in another team’s implant, and began
using that as their primary method of access to all ma-
chines that implant had been installed on.

Gameplay Each team pursued a different strategy at
the beginning of the competition. The green team
worked quickly at the onset to claim as many machines
as possible, and get an early foothold in most of the net-
work. However, although they took a large early lead,
they overextended themselves, and could not effectively
defend all of their machines simultaneously. The blue
team began very defensively, and began slowly and care-
fully hardening both asset machines on their local subnet
before working on attacking the pivots. The red team did
not focus on their local network at all, and instead imme-
diately tried to take over the pivots that could reach their
network, reasoning that if they could defend the network
border to their internal starting network, they could pre-
vent teams from breaching their assets. The orange team
took a metered approach between blue and green, and
tried to take advantage of teams over-extending them-
selves while simultaneously hardening.

Halfway into the competition, two additional unscored
Metasploitable 3 images were added to the network as
pivots [15]. Multiple teams found the machines by to
scanning the subnets they had access to and identified
them as an opportunity and a potential threat. Although
some teams left the machines alone for fear of spreading
themselves to thin, one team successfully compromised
and used them to access other team’s networks.

As expected, during the competition, the pivots were
highly contested territory, and every pivot changed hands
at least twice during the competition. Few teams were
successful in holding their pivots for long from other
teams at the onset of the competition. On multiple pivots,
multiple teams had manually installed their difficult-to-
remove implants, so multiple teams had a simultaneous
reliable method of access to these machines. For long
stretches of time, no team could effectively or perma-
nently evict the other teams; machines were reclaimed
very frequently. Most teams did a good job defending
the computers on their initial local subnet; very few of
those machines changed hands during the competition—
in fact, both the blue and orange teams never lost an asset
once during the competition.

The red team was able to generate a Golden Ticket for
the Domain Controller, and was able to use it during the
competition to access the Domain Controller [11, 16].
They used it towards the end of the competition to push
Group Policy to the Windows machines to give them-
selves access. Although extensive fighting over the Win-
dows computers ensued between the green team (who

7



had control of the computers) and red team (who had
control of the Domain Controller), having the Domain
Controller on their side was too much for the green team
to overcome, and most of the Windows pivots fell to the
red team towards the end of the competition. This, com-
bined with strong self-protecting implants, led the red
team to win the competition.

7 Discussion

The King of the Hill exercise went well, and students
enjoyed getting to practice with both offensive and de-
fensive cybersecurity skills. Students were highly en-
gaged during the competition, and students reported hav-
ing learned a great deal from the experience. KotH also
gave students the opportunity to explore novel attack vec-
tors. Many students got to work with large open-source
projects during their implant development, such as Bash,
PAM, and SSH, and these students reported that they
learned a lot from their implant development.

Overall, KotH gives students exposure to not just how
to exploit vulnerabilities, but also how to patch, fix, or
mitigate the damage from vulnerabilities. Since students
are scored by the integrity of their services, merely turn-
ing off a service or computer is not always a viable
option. Instead, students are faced with real-life cost-
benefit analysis decisions between leaving a service un-
patched, patching the vulnerable service, or disabling it.

A common problem with previous CTFs is that a go-to
strategy for most defensive teams is to install patches as
quickly as possible. Although this is good security prac-
tice, it removes the students’ incentive to more deeply ex-
plore and understand how the vulnerabilities occur, how
to exploit them, or even how to properly defend against
them. Conversely, in KotH, students are asked to patch
systems they control and later exploit them on other ma-
chines. This leads to an intimate understanding of both
the offensive and defensive side of each of the vulnera-
bilities.

Finally, while KotH is not a real-world environment,
it gives students real-world experiences and training in
penetration testing. Students during the exercise discov-
ered vulnerabilities on services not discussed in class and
developed implants with technologies that we had not
taught. Students pivoted effectively, and each team was
able to leverage its arsenal of exploits during the compe-
tition against other teams.

Tailoring KotH There are many ways that KotH could
be tailored or changed based on the technical level of the
students and what the instructors wish to teach. To mod-
ulate the competition for less experienced students, the
relative ease to breach a machine can be reduced. By in-

troducing specific vulnerabilities to the environment, in-
structors can focus what students practice with. Instruc-
tors can also introduce lesser-known services, configura-
tions, or operating systems if they want students to get
more knowledge or experience using those systems. We
have observed students researching exploits, defenses,
and gaining a deep knowledge of various services or op-
erating systems that were never covered in class, com-
pletely of their own volition.

We envision many other alternative designs for scor-
ing that could be explored as well. Instructors could
give incentives for defensive action by awarding points
based on repelled attacks. A system-administration fo-
cused course could limit the weaknesses present in the
machines themselves, and focus the competition on pro-
tecting service integrity. Forensic activity could be en-
couraged if the competition more heavily rewarded find-
ing other teams’ implants or discovering what offensive
actions other teams took against their network. To train
more purely offensive skills, the defensive requirements
could be removed entirely.

Perhaps most importantly, pivoting presents a unique
opportunity for instructors to encourage the usage of spe-
cific skills. By designing different paths in the network
of how to get from a starting computer to a distant com-
puter, instructors can build dependency chains of exploits
that must be achieved to navigate from one target to an-
other. It becomes easy for educators to customize and
decide where they want the competition to be - the net-
work topology makes it easy for instructors to express it,
and easy for students to see and immediately start work-
ing on it. Tailoring implant requirements as well is a
way for instructors to give students practice with specific
technologies and skillsets in a creative manner.

8 Conclusion

We have introduced King of the Hill (KotH), a novel
cybersecurity competition that provides students with
hands-on experience with real-world penetration testing
practices. KotH is distinguished from prior competitions
in that it combines (1) network pivoting, (2) custom im-
plant development, and (3) advanced preparation. An
initial in-class run of KotH indicate that it creates an ex-
citing environment in which students gain critical prac-
tice with valuable penetration testing skills. To facilitate
adoption and adaptation, we have made our code and net-
work maps available at https://koth.cs.umd.edu

Acknowledgments
We thank the anonymous ASE reviewers for their help-
ful feedback. This work was supported in part by NSF
grants CNS-1409249 and CNS-1564143.

8



References

[1] P. Chapman, J. Burket, and D. Brumley. PicoCTF:
A game-based computer security competition for
high school students. In USENIX Summit on Gam-
ing, Games, and Gamification in Security Educa-
tion (3GSE), 2014.

[2] N. Childers, B. Boe, L. Cavallaro, L. Cavedon,
M. Cova, M. Egele, and G. Vigna. Organizing large
scale hacking competitions. In DIMVA, 2010.

[3] A. Conklin. Cyber defense competitions and infor-
mation security education: An active learning solu-
tion for a capstone course. 2006.

[4] G. Conti, T. Babbitt, and J. Nelson. Hacking com-
petitions and their untapped potential for security
education. Security & Privacy, 9(3):56–59, 2011.

[5] Cypherpath - software defined infrastructure.
https://www.cypherpath.com/.

[6] DEF CON Communications Inc. Def con hacking
conference. http://www.defcon.org.

[7] A. Doupé, M. Egele, B. Caillat, G. Stringhini,
G. Yakin, A. Zand, L. Cavedon, and G. Vigna. Hit
’em where it hurts: A live security exercise on cy-
ber situational awareness. In Annual Computer Se-
curity Applications Conference (ACSAC), 2011.

[8] C. Eagle. Computer security competitions: Ex-
panding educational outcomes. IEEE Security &
Privacy, 11(4):69–71, 2013.

[9] Gtic monthly threat report, may 2017.
https://www.nttsecurity.com/docs/

librariesprovider3/resources/gtic-

monthly-threat-report-may-2017.

[10] How to exploit eternalblue and doublepulsar.
https://dl.packetstormsecurity.net/

papers/attack/exploiting-ebdp-en.pdf.

[11] Complete domain compromise with golden tickets.
https://blog.stealthbits.com/complete-

domain-compromise-with-golden-tickets/.

[12] L. J. Hoffman, T. Rosenberg, and R. Dodge. Ex-
ploring a national cybersecurity exercise for univer-
sities. IEEE Security & Privacy, 3(5):27–33, 2005.

[13] Jynx kit userland ld preload rootkit. https://

github.com/chokepoint/jynxkit.

[14] Maryland cyber defense competition. https://

www.cybercompex.org/topic/mdc3.

[15] Metasploitable3: An intentionally vulnerable
machine for exploit testing. https://blog.

rapid7.com/2016/11/15/test-your-might-

with-the-shiny-new-metasploitable3/.

[16] Kerberos golden ticket protection - cert-eu se-
curity whitepaper. https://cert.europa.

eu/static/WhitePapers/UPDATED%20-

%20CERT-EU_Security_Whitepaper_2014-

007_Kerberos_Golden_Ticket_Protection_

v1_4.pdf.

[17] Eternalblue: Exploit analysis and port to windows
10. https://www.risksense.com/_api/

filesystem/466/EternalBlue_RiskSense-

Exploit-Analysis-and-Port-to-

Microsoft-Windows-10_v1_2.pdf.

[18] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L.
Mazurek, and P. Mardziel. Build it, break it, fix
it: Contesting secure development. In ACM Con-
ference on Computer and Communications Security
(CCS), 2016.

[19] A. Ruef, M. Hicks, J. Parker, D. Levin, A. Memon,
J. Plane, and P. Mardziel. Build it break it: Measur-
ing and comparing development security. In Work-
shop on Cyber Security Experimentation and Test
(CSET), 2015.

[20] P. e. a. Sroufe. Experiences during a collegiate cy-
ber defense competition. Journal of Applied Secu-
rity Research, 5(3):382–396, 2010.

[21] A. B. Woszczynski and A. Green. Learning out-
comes for cyber defense competitions. Journal
of Information Systems Education, 28(1):21–38,
2017.

9


